

P
ag
e1

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Course: EEE 315 Microprocessor and Interfacing, Term: July 2015

Assignment on Modified Simple As Possible Computer (MSAP-2015)
Design

Objectives:

The completion of this assignment will
1. help students to be acquainted with underlying principles of designing microprocessors and

computers.
2. provide a basic understanding of execution of different computer instructions at machine

level.

Design Problem:

This assignment requires each student to submit a software design of an 8-bit computer which
can execute instructions from an assigned instruction set (the list is attached below). Students are
free to choose suitable simulation software (Circuit Maker or Proteus may be good choices for
this design purpose.) Each student has to implement 16 instructions assigned according to his/her
student number.

Submission procedure:

Students will submit their assignment in two phases. In the first phase, each student will submit a
detailed block diagram of the computer architecture showing all the blocks (with appropriate
control signals) necessary to perform the assigned instruction set. Along with the block diagram,
a table showing active signals and microinstructions for every T state of fetch and execution
cycles for each instruction has also to be submitted. Students may have to face a face a viva-voce
to explain their architecture.

In the second phase of submission, students will submit their circuit level designs. They have to
simulate and explain their designs on-site.

MSAP-2015 Specifications:

Designs to be submitted must conform to the following technical specifications:
1. 8-bit microcomputer.
2. Common BUS architecture.
3. 64 kBytes of main memory (RAM) support.
4. A and B registers are accessible to programmers (Students may include an additional

temporary register if it is absolutely required).
5. 8-bit opcode for instructions.
6. Provision for hexadecimal input (students have to include a hexadecimal key encoder)
7. Provision for hexadecimal output (binary to hexadecimal converter is to be included)
8. Provision for run in single instruction mode (For example see SAP-1).
9. The computer has to wait for input. It will continue running when a switch is pressed

after setting the input.
10. Flag register includes zero, sign, parity, carry and overflow flags.

P
ag
e2

11. Assembler program converts assembly code to machine code.
12. All ICs except timer, RAM and ROM are from 74XXX series.
13. Clock frequency 1kHz.
14. Provision for loading program from a ROM or from hexadecimal keypad to the system

memory (RAM) at the beginning of the simulation.
15. List and number of all ICs used.
16. Fan-in and fan-out conformity for each IC.

Deadlines:

Phase-I:
1. Last working day before midterm vacation. Delayed submissions will be penalized (5

marks per day).
2. The suitable date for viva-voce will be informed later.

Phase-II:
1. First working day of the last week of the term.
2. On-site submission.
 Circuit level designs will not be accepted without block diagrams and/or microprogram.

Evaluation Policy:

1. Timely submission of block diagram and microprogram: 30 marks
2. Viva-voce I: 10 marks
3. Timely submission of circuit level design: 50 marks
4. Viva-voce II: 10 marks
Total: 100 marks

P
ag
e3

MSAP-2015 Instruction Sets

Student ID: XX1 Student ID: XX2 Student ID: XX3
Opcode Instruction Opcode Instruction Opcode Instruction

00 RCR A 00 JZ address 00 HLT
01 CALL address 01 NOT B 01 RET
02 MOV [address], A 02 CALL address 02 NOT A
03 JNZ address 03 RET 03 CALL address
04 MOV B, [address] 04 MOV B, byte 04 JA address
05 POP A 05 HLT 05 POP [address]
06 XCHG B, A 06 MOV A, [address] 06 MOV B, [Address]
07 HLT 07 PUSH A 07 MOV A, byte
08 PUSH [address] 08 OUT A 08 CMP B, [address]
09 RET 09 TEST A, [Address] 09 OUT B
0A AND A, B 0A IN B 0A PUSH B
0B OUT B 0B POP [address] 0B ADD A, B
0C IN A 0C SUB A, B 0C IN [address]
0D OR B, [address] 0D XCHG [address], B 0D SHL B
0E CMP A, B 0E RCL A 0E SUB A, [address]
0F ADD [address], B 0F XOR [address], B 0F XCHG [address], A

Student ID: XX4 Student ID: XX5 Student ID: XX6
Opcode Instruction Opcode Instruction Opcode Instruction

00 OUT B 00 PUSHF 00 XCHG [address], B
01 MOV A, [address] 01 IN B 01 NOT B
02 SHR B 02 RCL A 02 CMP
03 ADD [address], B 03 INC B 03 POP [address]
04 HLT 04 HLT 04 SHL B
05 DEC A 05 CALL address 05 HLT
06 NEG A 06 XCHG A, B 06 CALL address
07 CALL address 07 MOV B, byte 07 IN A
08 IN [address] 08 JLE address 08 MOV [address], A
09 PUSH B 09 RET 09 PUSH [address]
0A OR A, B 0A OUT A 0A JA address
0B POP A 0B POPF 0B MOV B, Byte
0C XCHG B, [address] 0C MOV [address], B 0C NEG A
0D RET 0D XOR [address], A 0D ADD B, byte
0E TEST A, [address] 0E SUB B, [address] 0E OUT A
0F JZ address 0F CMP B, [address] 0F RET

P
ag
e4

Student ID: XX7 Student ID: XX8 Student ID: XX9

Opcode Instruction Opcode Instruction Opcode Instruction
00 MOV A, byte 00 INC A 00 IN A
01 ADD A, [address] 01 OUT A 01 HLT
02 OUT B 02 CALL address 02 RET
03 IN [address] 03 SHR B 03 CMP A, B
04 HLT 04 SUB B, byte 04 INC [address]
05 RCR B 05 PUSH [address] 05 PUSH B
06 POP B 06 RET 06 XCHG [address], B
07 CALL address 07 TEST A, [address] 07 AND A, byte
08 XCHG [address], A 08 IN B 08 SHR A
09 RET 09 JE address 09 CALL address
0A MOV B, A 0A XCHG [address], B 0A JAE address
0B JBE address 0B POP A 0B OUT B
0C CMP A, B 0C MOV A, [address] 0C POP [address]
0D PUSH A 0D HLT 0D MOV B, byte
0E XOR [address], B 0E OR [address], A 0E DEC [address]
0F DEC A 0F NOT B 0F MOV [address], A

Student ID: XX0

Opcode Instruction
00 ADD [address], byte
01 SUB A, [address]
02 HLT
03 IN A
04 MOV B, A
05 POP B
06 XCHG [address], B
07 JGE address
08 NOT B
09 RET
0A CALL address
0B RCR A
0C CMP B, [address]
0D OUT A
0E MOV [address], A
0F PUSH A

Note:

 Byte means immediate 1 byte data e.g., MOV B, 5H will insert 05 H in B register.
 [address] means the content of e.g., MOV B, [5H] means “copy the content of RAM

location 05H to B”.
 CMP operation is similar to SUB operation except it does not store the result.
 TEMP operation is similar to AND operation except it does not store the result.

P
ag
e5

MSAP-2015 Instruction Details

 Syntax Meaning

MOV A, byte Moves immediate byte to A
MOV B, byte Moves immediate byte to B
MOV A, [address] Moves content of address to A
MOV [address], A Moves content of A to address
MOV B, [address] Moves content of address to B
MOV [address], B Moves content of B to address
ADD A, byte Adds A with immediate byte and stores the result in A
ADD B, byte Adds B with immediate byte and stores the result in B
ADD A, [address] Adds the value of A with content of address and stores the result in A
ADD [address], A Adds content of address with the value of A and stores the result in address
ADD B, [address] Adds the value of B with content of address and stores the result in B
ADD [address], B Adds content of address with the value of B and stores the result in address
SUB A, byte Subtracts immediate byte from A and stores the result in A
SUB B, byte Subtracts immediate byte from B and stores the result in B
SUB A, [address] Subtracts content of address from the value of A and stores the result in A
SUB [address], A Subtracts A from the content of address and stores the result in address
SUB B, [address] Subtracts content of address from the value of B and stores the result in B
SUB [address], B Subtracts B from the content of address and stores the result in address
XCHG A, B Exchanges the contents of A and B
XCHG A, [address] Exchanges the contents of A and address
XCHG [address], A Exchanges the contents of A and address
XCHG B, [address] Exchanges the contents of B and address
XCHG [address], B Exchanges the contents of B and address
INC A Increments the content of A by 1
INC B Increments the content of B by 1
INC [address] Increments the content of address by 1
DEC A Decrements the content of A by 1
DEC B Decrements the content of B by 1
DEC [address] Decrements the content of address by 1
NEG A Negate A (2's complement negation)
NEG B Negate B (2's complement negation)
AND A, byte ANDs A with immediate byte and stores the result in A
AND B, byte ANDs B with immediate byte and stores the result in B
AND A, [address] ANDs the value of A with content of address and stores the result in A
AND [address], A ANDs content of address with the value of A and stores the result in address
AND B, [address] ANDs the value of B with content of address and stores the result in B
AND [address], B ANDs content of address with the value of B and stores the result in address
OR A, byte ORs A with immediate byte and stores the result in A
OR B, byte ORs B with immediate byte and stores the result in B
OR A, [address] ORs the value of A with content of address and stores the result in A
OR [address], A ORs content of address with the value of A and stores the result in address
OR B, [address] ORs the value of B with content of address and stores the result in B
OR [address], B ORs content of address with the value of B and stores the result in address
XOR A, byte XORs A with immediate byte and stores the result in A
XOR B, byte XORs B with immediate byte and stores the result in B
XOR A, [address] XORs the value of A with content of address and stores the result in A
XOR [address], A XORs content of address with the value of A and stores the result in address
XOR B, [address] XORs the value of B with content of address and stores the result in B

P
ag
e6

XOR [address], B XORs content of address with the value of B and stores the result in address
CMP A, byte Compares A with immediate byte and updates flags
CMP B, byte Compares B with immediate byte and updates flags
CMP A, [address] Compares the value of A with content of address and updates flags
CMP [address], A Compares content of address with the value of A and updates flags
CMP B, [address] Compares the value of B with content of address and stores the result in B
CMP [address], B Compares content of address with the value of B and updates flags
TEST A, byte ANDs A with immediate byte and updates flags
TEST B, byte ANDs B with immediate byte and updates flags
TEST A, [address] ANDs the value of A with content of address and updates flags
TEST [address], A ANDs content of address with the value of A and updates flags
TEST B, [address] ANDs the value of B with content of address and updates flags
TEST [address], B ANDs content of address with the value of B and updates flags
JMP address Jumps to address: unconditional
JZ address Jumps if result of previous operation was zero
JNZ address Jumps if not zero
JG address Jumps if greater: signed
JGE address Jumps if greater or equal: signed
JL address Jumps if less: signed
JLE address Jumps if less or equal: signed
JE address Jumps if equal
JA address Jumps if above: unsigned
JAE address Jumps if above or equal: unsigned
JB address Jumps if below: unsigned
JBE address Jumps if below or equal: unsigned
PUSH A Pushes the content of A to stack
PUSH B Pushes the content of B to stack
PUSH [address] Pushes the content of address to stack
POP A Pops from stack to A
POP B Pops from stack to B
POP [address] Pops from stack to the addressed location
PUSHF Pushes the flag register to stack
POPF Pops the flag register from stack
CALL address Calls a procedure from address
RET Return from procedure
IN A Takes an input from the input port and puts it inside the A register
IN B Takes an input and puts it inside the B register
IN [address] Takes an input and puts it as the content of address
OUT A Displays the content of A in output port
OUT B Displays the content of B in output port
HLT Halts the computer
RCL A Rotate A with carry to left by 1
RCL B Rotate B with carry to left by 1
RCR A Rotate A with carry to right by 1
RCR B Rotate B with carry to right by 1
SHL A Shift A to left by 1
SHL B Shift B to left by 1
SHR A Shift A to right by 1
SHR B Shift B to right by 1

